

Fish Care Study

2019 Ontario B.A.S.S. Nation Qualifier

Fish Care Study – Background

- There are three primary phases of Fish Care in Tournaments
 - 1. Competitor's Livewells
 - 2. Weigh-in Staging Troughs
 - 3. Live Release Boat
- All phases must be monitored to ensure proper fish care and to identify potential issues through the process.
- The three primary factors fish care success are oxygen, temperature and fish waste.

Fish Care Study – Background

- During the 2019 OBN Qualifier on Rice Lake, Ontario Jason Barnucz (OBN Conservation Director) and Dave Spence (OBN President) carried out a study of the events fish care system.
- This was done in collaboration with the Canadian Sport Fishing League who were in charge of event operation
- This study included monitoring of the following:
 - Weigh-in Troughs
 - Live Release Boat
 - Competitor's Livewells

Fish Care Study – Location

Rice Lake, Ontario

Area: ~10,000 hectares

From Toronto: ~100km drive NE

Fish Care Study – Location

ONTARIO NATION

Weather Station: Peterborough, Ontario

Dates of Event: Sept 28th and 29th 2019

Value	Max Daily Temperature (°C)	Min Daily Temperature (°C)
Minimum	15.3	0
Mean	21.98	6.31
Max	28.7	13.8

^{*}September 2019 Temperature Data, Environment Canada

Fish Care Study – Background

Oxygen Meter and Optical Probe Model: YSI Pro DO

Oxygen levels at the Event Site

- Day 1: 8.6 mg/L
- Day 2: 8.9 mg/L

Optical Oxygen Probes

Benefits: No membrane replacement, no electrolyte replacement, optical dissolved oxygen portable meters are easy to maintain.

Limitations: Exposure to alcohols and other organics must be limited to avoid damage to the sensor.

Fish Care Study – Tournament Format

• 87 Boats

• Start: 7am, Check-In: 3pm

• Weigh-in Period: ~2-3hrs

• Limits:

Anglers: 3 Fish

• Co-Anglers: 2 Fish

Mixed Fishery

Largemouth Bass

• Smallmouth Bass

Fish Care Study – Fish Troughs

- All troughs were filled at 1400hrs
- Water supply was a an aquifer/artesian well.
- The baseline oxygen was 6.5 mg/L.

Fish Care Study – Fish Troughs

- Troughs 1 and 2 included aeration and additional raw oxygen at a rate of 1 L/min.
- Trough 3 was only aeration.

STAGE

Oxygen Flow Meter

Fish Care Study – Fish Handling Troughs

Observations

Trough 1 (O2 + aeration)

Start: 6.5mg/L

Peak: 16.32 mg/L

• End: 9.55 mg/L

*5 mg/L: Critical value for Keeping Bass Alive, **~8.5 mg/L: Dissolved Oxygen at Tournament Site

Fish Care Study – Fish Handling Troughs

Observations

Trough 2 (O2 + aeration)

Start: 6.5mg/L

Peak: 13.42 mg/L

• End: 9.83 mg/L

*5 mg/L: Critical value for Keeping Bass Alive, **~8.5 mg/L: Dissolved Oxygen at Tournament Site

Fish Care Study – Fish Handling Troughs

Observations

Trough 3 (only aeration)

- Start: 6.5 mg/L
- Peak: 10.82 mg/L
- End: 9.06 mg/L.

*5 mg/L: Critical value for Keeping Bass Alive, **~8.5 mg/L: Dissolved Oxygen at Tournament Site

Fish Care Study - Fish Handling Troughs

Results – Weigh-in Trough Monitoring

- Fish care management in the troughs exceeded what is recommended for competitive bass tournaments.
- Monitoring and maintaining oxygen levels throughout the event was important as fluctuations were observed.
- Monitoring oxygen levels and using proper regulators can reduce oxygen use and result in cost/time savings for tournament organizers.

Live Release Boat Monitoring

Boat Setup

- The CSFL Live Release Boat was filled with the same water as the troughs.
- The boat was operated by two volunteers throughout both days of the event.
- Live Release Boat was equipped with oxygen and aeration systems.

Aerator and Stone

Boat Setup

- Baseline oxygen in the tanks was ~7 mg/L at 1500hrs.
- Oxygen regulators were set at 1L/min.
- The levels were monitored through the event.

Aerator and Stone

Observations

- First check: 12 mg/L
- Peak: 14.96 mg/L
- Final check: 9.21mg/L
- Fish were divided equally per tank.
- One release dump per day.

*5 mg/L: Critical value for Keeping Bass Alive **8.5 mg/L: Dissolved Oxygen of Tournament Site

Results – Live Release Boat Monitoring

- Live Release Boat oxygen levels were maintained above recommended levels.
- There was additional capacity if needed but was not required for this event.

Live Well Monitoring

Methods

- Competitor boats were selected at random during the weigh-in each day.
- Boats were surveyed as time allowed between monitoring troughs and live release boat.

Methods

 Observations recorded included the boat number and the dissolved oxygen level of all livewells, whether divided or undivided.

Comparing Day 1 and Day 2 Livewell Oxygen Levels

A total of 67 livewells were checked at random during the event

• Day 1: 36 boats

• Day 2: 31 boats

Results		<u>Day 1</u>	<u>Day 2</u>
 Oxygen levels in livewells on Day 1 and Day 2 were 	No. of Boats	36	31
sufficient.	Minimum	6.45*	5.90*
 A significant difference 	Mean	8.3	8.9
was observed between Day 1 and Day 2.	Maximum	11.98	9.83

^{*5} mg/L: Critical value for Keeping Bass Alive, **~8.7 mg/L: Dissolved Oxygen at Tournament Site

*5 mg/L: Critical value for Keeping Bass Alive, **~8.7 mg/L: Dissolved Oxygen at Tournament Site

Results - Livewell Monitoring

- The mean oxygen level on Day 1 was below event site levels.
- Several competitors assumed the oxygen a the site was insufficient and operated livewells on recirculation and not using the fill/auto setting.
- Competitors were advised to reduce their use of recirculation and rely more on auto/fill to manage livewells.
- The observed result of this guidance was a significant difference in oxygen levels was observed on Day 2.

Comparing Day 1 and Day 2 Individual Livewells

Methods

Livewells from 14 competitors
 were compared between Day 1
 and Day 2 to determine if a
 difference was observed.

Results of Individual Boats

 There was a significant difference observed between the oxygen levels between Day 1 and Day 2.

	<u>pay r</u>	Day 2
Sample	14	14
Minimum	6.45*	8.08*
Mean	7.99	9.03
Maximum	9.38	9.83

*5 mg/L: Critical value for Keeping Bass Alive, **~8.7 mg/L: Dissolved Oxygen at Tournament Site

*5 mg/L: Critical value for Keeping Bass Alive, **~8.7 mg/L: Dissolved Oxygen at Tournament Site

Tournament Fish Care Management Recommendations

Fish Trough Management Recommendations

- Organizers must have an ample supply of good quality water to fill troughs in advance of the weigh-in.
- Having water pumps/hoses on hand to for filling troughs and to provide effective water changes is recommended.
- Using raw oxygen for fish care at a live release tournament is vital.
 Raw oxygen components (regulators, hoses, fittings etc.) is an investment that pays big dividends.
- Oxygen is highly flammable! Competitors need to be informed and organizers need to take precautions.

Livewell Release Boat Management Recommendations

- Follow the procedure of 1lb of bass per gallon of tank water.
- Always monitor oxygen levels to make sure capacity is not exceeded in the live release boat holding tanks.
- If only **one** live release is used organizers should consider stand-by tanks. This allows a live release boat to leave release fish and return without holding up the event OR cause ill effects on caught fish.
- Double handling of fish with stand-by tanks is not optimal but can be done if needed.

Livewell Management Recommendations

- During tournaments competitors may rely too much on recirculation to manage livewells.
- Auto/Fill settings with short timing intervals is a better way to manage livewells for most situations.
- Competitors should have good working knowledge of their livewell system and make sure their system is in good working order.
- Primarily pumps and batteries should be serviced and monitored to ensure livewells will operate effectively.

Tournament Site Management and Information

- Many competitors may assume oxygen levels at an event staging areas are poor and manage livewells using recirculation.
- Having knowledge of water quality at an event site, especially the conditions in the boat staging area, can provide valuable insight to livewell management for competitors.
- Tournament organizers should be communicating with competitors information about livewell management during the weigh-in staging process of events.

Next Steps - 2020 Ontario B.A.S.S. Nation Qualifier

- The 2020 Ontario B.A.S.S. Qualifier will be held at the same location at the same time of the year.
- A review is underway to possibl increase limits from 3/2 (Angler/Coangler) to 4/3 to better mirror the B.A.S.S. Nation limits of 5/3.
- This will be discussed by the Ontario B.A.S.S. Nation Board of Directors and Tournament Organizers.
- Information from this study will help to inform this decision.